evelina dmitry

ER=EPR | 2017 | installation
in collaboration with William Basinski, Jean-Marc Chomaz
and LIGO.

Two corotating vortices, joined together via a slender vortical bridge, lethargically drift through a body of water. Light hitting the water’s surface transforms the vortex pair into a dynamic lens, projecting two entangled black holes encircled by shimmering halos. As soon as the “wormhole” link between the black holes rips apart, the vortices immediately dissipate, analogously to the collapse of a wave function.

Connecting distant black holes or two sides of the same black hole, might wormholes be an example of cosmic-scale quantum entanglement? This mind-bending conjecture of Juan Maldacena and Leonard Susskind can be traced back to two iconoclastic papers from 1935. Previously thought to be unrelated (both by their authors and numerous generations of readers), one article, the legendary EPR (penned by Einstein, Podolsky and Rosen) engendered the concept of quantum entanglement or “spooky action at a distance”; and the second text theorised Einstein-Rosen (ER) bridges, later known as wormholes. Although the widely read EPR paper has led to the second quantum revolution, currently paving the way to quantum simulation and computation, ER has enjoyed very little readership. By equating ER to EPR, the formerly irreconcilable paradigms of physics have the potential to converge: the phenomenon of gravity is imagined in a quantum mechanical context. The theory further implies, according to Maldacena, that the undivided, “reliable structure of space-time is due to the ghostly features of entanglement”.

    img     video

© 1998 - 2018 Domnitch Gelfand